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ABSTRACT

Discrete diffusion models have achieved success in tasks like image generation
and masked language modeling but face limitations in controlled content editing.
We introduce DICE (Discrete Inversion for Controllable Editing), the first ap-
proach to enable precise inversion for discrete diffusion models, including multi-
nomial diffusion and masked generative models. By recording noise sequences
and masking patterns during the reverse diffusion process, DICE enables accu-
rate reconstruction and flexible editing of discrete data without the need for pre-
defined masks or attention manipulation. We demonstrate the effectiveness of
DICE across both image and text domains, evaluating it on models such as VQ-
Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data
fidelity while enhancing editing capabilities, offering new opportunities for fine-
grained content manipulation in discrete spaces. Code is available at [link].

1 INTRODUCTION

Diffusion models have emerged as a powerful class of generative models, achieving remarkable suc-
cess in high-fidelity image and video synthesis (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach
et al., 2022; Ramesh et al., 2022; Ho et al., 2022; OpenAI, 2024). These models generate data by
iteratively denoising samples from a simple noise distribution, effectively reversing a diffusion pro-
cess that gradually corrupts data. Broadly, diffusion models can be categorized into continuous and
discrete types, each tailored to different data modalities and applications.

Continuous diffusion models operate in continuous spaces, leveraging stochastic differential equa-
tions (SDEs) or their deterministic counterparts, ordinary differential equations (ODEs), to model
the forward and reverse diffusion processes (Song et al., 2020; 2021). Advances such as flow match-
ing (Lipman et al., 2022; Liu et al., 2022) have enhanced their efficiency and flexibility. These mod-
els have been successfully applied in various domains, including image editing (Meng et al., 2021;
Avrahami et al., 2022; Mokady et al., 2022; Han et al., 2023; 2024; Zhang et al., 2023), medical
imaging (He et al., 2023), and solving inverse problems (Chung et al., 2022; Stathopoulos et al.,
2024). In image editing, continuous diffusion models enable controlled manipulation of images
while preserving consistency with the underlying data distribution. A key capability enabling this
is inversion—the process of reversing the diffusion model to recover the original noise vector or
latent representation that could have generated a given data sample. Two main inversion approaches
exist: deterministic inversion using ODEs (e.g., DDIM Inversion (Song et al., 2021)) and stochastic
inversion by recording noise sequences (e.g., CycleDiffusion (Wu & De la Torre, 2022), DDPM
Inversion (Dhariwal & Nichol, 2021)).

Discrete diffusion models are designed for inherently discrete data such as text or image to-
kens (Esser et al., 2021b). They adapt the diffusion framework to discrete spaces by defin-
ing appropriate transition kernels that corrupt and restore discrete data (Hoogeboom et al.,
2021; Austin et al., 2021; Gu et al., 2022). Prominent examples include multinomial diffu-
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Figure 2: Here we demonstrate the two types of reconstruction and editing paradigms, namely
ODE-based and Non-ODE based. (a,c) shows the ODE-based editing and reconstructions, while
it provides accurate editing and reconstruction performances, it highly depends on the underlying
ODE trajectory, which is not feasible in the discrete diffusion. However, the Non-ODE editing
samples a trajectory by directly adding noise to x0 and record the difference between the predicted
xt−1 and the sampled xt−1 as indicated in the red arrow. In this way, we are able to reconstruct/edit
the image without the strong condition of having an underlying ODE.

sion (Hoogeboom et al., 2021; Gu et al., 2022), D3PM (Austin et al., 2021), and masked
generative models like MaskGIT (Chang et al., 2022), Muse (Chang et al., 2023). Despite
their success in generation tasks, discrete diffusion models face limitations in controlled con-
tent editing. For instance, masked generative models achieve image editing through masked
inpainting, where regions are masked and regenerated based on new conditions. However,
this approach lacks the ability to inject information from the masked area into the inpaint-
ing process, limiting fine-grained control over the editing outcome (as illustrated in Figure 1).

Input Image Inpainting w/ Mask Ours (w/o Mask)

Black and white cat dog on floor

Figure 1: Illustration of the limitation of masked
inpainting method. Here, we want to change the
cat to a dog. Inpainting with masked generation
inadvertently modifies the orientation of the head,
resulting in a less favourable result. With our dis-
crete inversion method, we are able to edit the im-
age while preserving other properties of the ob-
ject being edited. This is achieved by injecting
the information from the input image into the logit
space. Dotted red box indicates the mask.

Moreover, existing ODE-based inversion tech-
niques developed for continuous diffusion
models are not directly applicable to discrete
diffusion models due to inherent differences
in data representation and diffusion processes.
This gap hinders the ability to perform pre-
cise inversion and controlled editing in discrete
spaces. To address this challenge, we pro-
pose DICE (Discrete Inversion for Controllable
Editing), the first inversion algorithm for dis-
crete diffusion models to the best of our knowl-
edge. Our method extends the stochastic inver-
sion approach to discrete diffusion models, in-
cluding both multinomial diffusion and masked
generative models. The core idea is to record
the noise sequence needed to recover a stochas-
tic trajectory in the reverse diffusion process.
Specifically, given an artificial trajectory where
latent states have low correlation, we fit reverse
sampling steps to this trajectory and save the residuals between targets and predictions. This process
imprints the information of the original input data into the recorded residuals. During editing or
inference, the recorded residuals are added back, allowing us to inject and control the amount of
information introduced into the inference process.

Our approach enables accurate reconstruction of the original input data and facilitates controlled
editing without the need for predefined masks or attention map manipulation. It provides a flexible
framework for fine-grained content manipulation in discrete spaces, overcoming the limitations of
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existing methods. We validate the effectiveness of DICE through extensive experiments on both
image and text modalities. We evaluate our method on models such as VQ-Diffusion (Gu et al.,
2022), Paella (Rampas et al., 2022), and RoBERTa (Liu et al., 2019), demonstrating its versatility
across different types of discrete generative models. Additionally, we introduce a novel text-editing
dataset to further showcase our method’s capabilities and to facilitate future research in this area.
Our contributions can be summarized as follows:

• We introduce DICE, an inversion algorithm for discrete diffusion models, including multi-
nomial diffusion and masked generative models. By recording and injecting noise se-
quences or masking patterns, DICE enables accurate reconstruction and controlled editing
of discrete data without the need for predefined masks or attention manipulation.

• We validate the effectiveness of DICE through comprehensive experiments on both image
and text modalities, demonstrating its versatility across different types of discrete genera-
tive models.

• We show that our approach can transform a model primarily trained for understanding
tasks, such as RoBERTa, into a competitive generative model for text generation and edit-
ing, illustrating the potential for extending discrete diffusion models to new applications.

2 RELATED WORK

Discrete diffusion. D3PM (Austin et al., 2021) and Multinomial Diffusion (Hoogeboom et al.,
2021) spearheaded the study of diffusion processes in discrete spaces by developing a corruption
mechanism for categorical data. Following those works, Esser et al. (2021a) and Gu et al. (2022)
introduced the VQ-GAN as a way to discretize the image into tokens. Also, extending to the natural
language processing, Devlin et al. (2018) and Liu et al. (2019) proposed a bidirectional transformer
for language understanding, which can be viewed as a discrete diffusion model (Wang & Cho, 2019).
Additionally, Campbell et al. (2022) proposed discrete diffusion models with continuous time, while
Lou et al. (2023) extended score matching (Song & Ermon, 2019) to discrete spaces by learning
probability ratios. Gat et al. (2024) proposed discrete flow matching to extend the flow matching
to discrete space. MaskGIT (Chang et al., 2022), Muse (Chang et al., 2023) and MMVID (Han
et al., 2022) introduced efficient non-autoregressive methods for image generation by iteratively
remasking and reprediction.
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Figure 3: Mutual information between zt and x0.
Computed with a simple DDPM setting by assum-
ing x0 ∼ N (0, I).

Diffusion inversion. Diffusion inversion aims
to find an encoding or latent representation
of the input signal that can be used to re-
construct the original data. Traditional ap-
proaches to diffusion inversion are based on
neural ODEs (Chen et al., 2018), such as DDIM
inversion (Song et al., 2021) and flow match-
ing (Lipman et al., 2022; Liu et al., 2022),
where deterministic trajectories are used for in-
version. Another class of methods focuses on
stochastic differential equations (SDEs) (Song
et al., 2020), including models like CycleDif-
fusion (Wu & De la Torre, 2022) and DDPM
Inversion (Huberman-Spiegelglas et al., 2024),
which rely on tracking noise or residuals along
a stochastic path to recover the input. Our ap-
proach generalizes the concept of DDPM Inver-
sion by extending it to discrete diffusion mod-
els, enabling effective inversion in both contin-
uous and discrete settings.

Inversion-based image editing. DDIM inversion (Song et al., 2021) has served as a founda-
tional technique for various diffusion-based image editing approaches. In many image editing
tasks, DDIM-type methods are often employed alongside guidance techniques like Prompt-to-
Prompt (Hertz et al., 2022), which manipulate cross-attention maps. In contrast, DDPM inversion-
based (Huberman-Spiegelglas et al., 2024) approaches are more user-friendly, as they do not require
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cross-attention manipulations. To address issues such as inaccurate reconstruction and error accu-
mulation, Null-text Inversion (Mokady et al., 2022) introduces test-time optimization of null em-
beddings, ensuring the reconstruction trajectory aligns more closely with the DDIM inversion path.
Negative-prompt Inversion (Miyake et al., 2023; Han et al., 2024) further improves time efficiency
by providing a closed-form solution to an approximate inversion problem, reducing computational
costs while maintaining competitive reconstruction quality.

3 METHODS

3.1 PRELIMINARIES

Masked generative modeling. Masked generative modeling is widely used in representation learn-
ing for both natural language processing and computer vision. It works by masking parts of the input
and training the model to reconstruct the missing data. In models like BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019), masked tokens ([MASK]) are predicted based on the surrounding
context, excelling in text completion and embedding representation learning. For image generation,
Paella (Rampas et al., 2022) adapts this approach for text-conditional image generation by renoising
tokens instead of masking. The inference process in masked generative models typically involves
iterative renoise/remask and repredict steps.

Multinomial Diffusion. Denoting x0 ∈ {1, . . . ,K}D as a data point of dimension D. We use
v(x

(i)
t ) to denote the one hot column vector representation of the i-th entry of xt. To simplify no-

tation, in the following we drop index i and any function that operates on vector xt is populated
along its dimension. Diffusion model defines a markov chain q(x1:T |x0) = ΠT

t=1q(xt|xt−1) that
gradually add noise to the data x0 for T times so that xT contains little to no information. Dis-
crete diffusion model (Hoogeboom et al., 2021; Austin et al., 2021; Gu et al., 2022) proposed an
alternative likelihood-based model for categorical data, and defines the forward process following:

q(xt|xt−1) = Cat (v(xt);π = Qtv(xt−1)) . (1)

where Qt is the transition matrix between adjacent states following mask-and-replace strategy. The
posterior distribution given x0 has a closed-form solution,

q (xt−1|xt, x0) =
(Q⊤

t v(xt))⊙ (Qt−1v(x0))

v(xt)⊤Qtv(x0)
. (2)

where Qt = Qt · · ·Q1 is the cumulative transition matrix. The details of Qt and Qt are given in
the supplementary materials. The inference process is as below:

πθ(xt, t) = pθ (xt−1|xt) =

K∑
x̃0=1

q (xt−1|xt, x̃0) pθ (x̃0|xt) , (3)

with pθ(x̃0|xt) is parameterized by a neural network. We gradually denoise from xT to x0 using
3. For numerical stability, the implementation uses log space instead of probability space. Masked
generative models can be viewed as a special case of multinomial diffusion models with an addi-
tional absorbing state (or the [MASK] state). Its training objective can be viewed as a reweighted
ELBO (Bond-Taylor et al., 2022).

3.2 DISCRETE INVERSION FOR CONTROLLABLE EDITING

Non ODE-based inversion. ODE-based generative models, such as DDIM and flow matching,
define an ODE trajectory. Due to the deterministic nature of ODEs, inversion can be achieved by
solving the ODE using the Euler method in forward direction, ensuring reconstruction based on the
inherent properties of the ODE. In contrast, another line of research focuses on SDE-based models,
such as CycleDiffusion (Wu & De la Torre, 2022) and DDPM Inversion (Huberman-Spiegelglas
et al., 2024). Broadly speaking, these approaches ensure reconstruction by recording the noises or
residuals that are required to reproduce the stochastic trajectory. CycleDiffusion records the Gaus-
sian noise zt during sampling from posterior p(xt−1|xt,x0 = x0) and injects information of the
input signal by feeding the true x0. DDPM Inversion, on the other hand, incorporates information
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into zt by fitting the reverse process into an artificial stochastic trajectory obtained by independent
q-sample. For both CycleDiffusion and DDPM Inversion, the key idea is to utilize the Gaussian
reparameterization trick, x = µ + σz ⇔ x ∼ N (x;µ, σ2), and keeping track of the “noise” that
could have generated the sample from mean. For discrete diffusion models, we utilize the Gumbel-
Max trick (Maddison et al., 2014; Jang et al., 2016), x = argmax (log(π) + g)⇔ x ∼ Cat(x;π).
Figure 2 provides an intuition of the proposed method.

Inverting multinomial diffusion. Similar to Huberman-Spiegelglas et al. (2024), we start by sam-
pling a stochastic trajectory, {xt}, a sequence of independent q-sample’s from q(xt|x0) (we
populate the following sampling operation along the dimension of xt),

xt = argmax (log(q(xt|x0)) + g), with (4)

q(xt|x0) = Cat(xt;π = Qtv(x0)) and g ∼ Gumbel(0, I).
Note that here we use the Gumbel softmax trick (Jang et al., 2016), which is equivalent to sampling
from categorical distribution q(xt|x0).

yt−1 = log(onehot(xt−1)), and
ŷt−1 = log(πθ(xt, t)),

zt :=yt−1 − ŷt−1 (5)

Note that here the latent zt ∈ RD×K .

In this reverse process, the latent space {xT , zT , zt−1, ...,z1} together with the fixed discrete dif-
fusion model πθ also uniquely define the same stochastic trajectory x0,x1, ...,xT . The detailed
algorithm is given in Algorithm 2.

Algorithm 1 Discrete Inversion for Masked Gen-
erative Modeling

Inversion:
1: y0 ← D(x0, c, t = 0)
2: Sample noise token map n
3: for t from 1 to T do
4: mt ← GenerateMask(t) ▷ Sampling

masks according to inference algorithm
5: xt ← x0 ⊙ (1−mt) + n⊙mt

6: ŷ0|t ← Dθ(xt, c, t = t)
7: zt ← y0 − ŷ0|t ▷ Eq 6
8: end for

Editing/Sampling:
9: for t from τ to 1 do

10: ŷ0|t ← Dθ(xt, c
′, t = t)

11: g ∼ Gumbel(0, I)
12: ỹ0 ← ŷ0|t + λ1 · zt + λ2 · g
13: x̃0 ← argmax ỹ0

14: xt−1 ← x̃0 ⊙ (1−mt−1) +n⊙mt−1

15: end for
16: Return x0.

Algorithm 2 Discrete Inversion for Multinomial
Diffusion
Inversion:

1: for t from 1 to T do
2: xt ∼ q(xt|x0) ▷ Independent q-sample

using Eq 4
3: yt ← log(onehot(xt))
4: end for
5: for t from T to 1 do
6: ŷt−1 ← log(πθ(xt, c, t)) ▷ Log

posterior using Eq 3
7: zt ← yt−1 − ŷt−1 ▷ Eq 5
8: end for

Editing/Sampling:
9: for t from τ to 1 do

10: x̂0 ← pθ(x0|xt = argmaxyt)
11: g ∼ Gumbel(0, I)
12: yt−1 ← log(q(xt−1|xt, x̂0; c

′)) + λ1 ·
zt + λ2 · g

13: end for
14: Return x0 = argmaxy0.

Inverting masked generative models. In masked generative modeling, the stochastic trajectory xt

is constructed according to the specific inference algorithm of the model in use. For example, in
Paella Rampas et al. (2022), the masking is inclusive, meaning that as the time step t increases, the
set of masked tokens grows. In contrast, the Unleashing Transformer Bond-Taylor et al. (2022) em-
ploys random masking at each step, where masks are generated independently using the q-sample
function. Without loss of generality, we define a denoiser function Dθ (parameterized by θ). This
denoiser outputs the logits of the predicted unmasked data given the noisy tokens xt. Since in this
case, the categorical sampling happens at sampling from the denoiser’s prediction, we therefore
define an corresponding latent sequence:

ŷ0|t = log(pθ(x0|xt)) = Dθ(xt, t)

zt :=y0 − ŷ0|t. (6)
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With our proposed latent space, accurate reconstruction is guaranteed. However, for editing tasks,
this level of precision may not be ideal if the latent variable zt dominates the generation process.
The detailed algorithm is given in Algorithm 1.

To provide more flexibility, we introduce the hyperparameters τ , λ1, and λ2, which allow for finer
control over the editing process. Specifically, τ represents the starting (and largest) timestep at which
the editing process begins, while λ1 controls the amount of information injected from the original
input, and λ2 governs the introduction of random noise.

Analysis. We describe a simple yet prototypical example of DDPM and compute the mutual infor-
mation between encoded latents and the input signal.

Remark 3.1. Given a simple Gaussian DDPM with x0 ∼ N (0, I), latents {zt} are obtained with
DDPM inversion (Huberman-Spiegelglas et al., 2024), then the mutual information between zt and
x0 is:

I(zt;x0) =
D

2
log(

β2
t αt−1 + 1− αt−1 + αt(1− αt)

1− αt−1 + αt(1− αt)
). (7)

The mutual information between zt and x0 is illustrated in Figure 3. We observe that the amount
of information encoded from x0 into zt decreases as t increases, motivating us to explore different
scheduling strategies for λ’s (see Figure 7).

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed inversion methods on both image
and language diffusion models. Our experiments show that the methods can preserve identity in both
vision and language tasks while successfully making the intended changes. The implementation
details can be reviewed in Supplementary Materials.

4.1 IMAGE DIFFUSION MODEL

For the image diffusion model, we mainly investigate the use of absorbing state discrete
model (Austin et al., 2021) including a masked generative model, Paella, and a multinomial dif-
fusion model, VQ-Diffusion. We demonstrate the inversion reconstruction ability and image editing
performance in both categories with DICE.

Dataset. The Prompt-based Image Editing Benchmark (PIE-Bench) by (Ju et al., 2023) is a recently
introduced dataset designed to evaluate text-to-image (T2I) editing methods. The dataset assesses
language-guided image editing in 9 different scenarios with 700 images. The benchmark’s detailed
annotations and variety of editing tasks were instrumental in thoroughly assessing our method’s
capabilities, ensuring a fair and consistent comparison with existing approaches.

4.1.1 INVERSION RECONSTRUCTION

In this section, we evaluate the accuracy of inversion without editing. This is achieved by first
inverting the image and then using the recorded latent code to reconstruct the original image.

Evaluation Metrics. Here, we evaluate the image similarity by PSNR, LPIPS, MSE and SSIM of
the original and the generated image under the same prompt with DICE and masked generation.

Quantitative Analysis. The reconstruction performance of our method, as shown in Table 1, far
surpasses the baseline Inpainting + Paella model across all metrics. In the case of masked inpainting,
all image tokens are replaced with randomly sampled tokens, meaning the model lacks any prior
information about the original image. As a result, the reconstructed image differs significantly from
the one being inverted, leading to lower similarity scores. In contrast, our method demonstrates
near-perfect reconstruction, as indicated by the metrics, and notably produces an identical image
without the errors typically introduced by the VQ-VAE/GAN quantization process, as seen in the
results marked with (†). This highlights the superior accuracy and consistency of our approach in
generating high-fidelity reconstructions.
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Method Metric

Inverse+Model PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑
Inpainting+Paella 10.50 565.11 1002.09 30.13
Ours+Paella 30.91 39.81 11.07 90.22
Ours†+Paella Inf 0.07 0.01 99.99

Table 1: Inversion Reconstruction performance † The metric is calculated between the original
image and its inverted counterpart. Due to the encoding and decoding steps in the VQ-VAE/GAN
process, some inaccuracies are introduced by the quantization. The PSNR is Inf due to the recon-
struction of our method yielding the same image after the VQ-VAE/GAN process.

4.1.2 EDITING PERFORMANCE

In this section, we discuss the editing performance of our proposed method. Since there is no
discrete diffusion inversion exists, we compare our method with masked generation as indicated in
the original paper. In addition to that, we also demonstrate the metric from continuous counterparts.

Evaluation Metrics. To demonstrate the effectiveness and efficiency of our proposed inversion
method, we employ eight metrics covering three key aspects: structure distance, background preser-
vation, and edit prompt-image consistency, as outlined in Ju et al. (2023). We utilize the structure
distance metric proposed by Tumanyan et al. (2023) to measure the structural similarity between the
original and generated images. To evaluate how well the background is preserved outside the an-
notated editing mask, we use Peak Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch
Similarity (LPIPS) (Zhang et al., 2018), Mean Squared Error (MSE), and Structural Similarity Index
Measure (SSIM) (Wang et al., 2004). We also assess the consistency between the edit prompt and
the generated image using CLIP (Radford et al., 2021) Similarity Score (Wu et al., 2021), which is
calculated over the whole image and specifically within the regions defined by the editing mask.

Results. In Table 2, we demonstrate the quantitative result of DICE using Paella and VQ-Diffusion
compared to continuous diffusion model and also inpainting. Notably, our approach with the Paella
model achieves the lowest structure distance 11.34, outperforming all other methods, including the
continuous diffusion models. Additionally, while the DDPM Inversion with Stable Diffusion v1.4
shows the highest CLIP similarity scores for both whole and edited regions, our method maintains
competitive CLIP similarity with Paella. Given the significant reduction in structure distance, our
method offers a superior balance between structural preservation and semantic alignment in ed-
its. Furthermore, when combined with VQ-Diffusion, our method continues to show strong perfor-
mance. The results in Table 3 clearly demonstrate the superior background preservation capabilities
of our method compared to DDIM+SD1.4. All four metrics underscore the structural consistency
of our approach in preserving the unedited regions of the image. These results show the effective-
ness of our method in maintaining background integrity during editing and provide evidence that
information about the original image is instilled into the latent space of DICE.

In Figure 4, we show the editing results for both Paella and VQ-Diffusion using DICE. Both models
successfully modify real images according to the target prompts. In all cases, our results exhibit
both high fidelity to the input image and adherence to the target prompt.

4.2 LANGUAGE DIFFUSION MODEL

In this section, we evaluate DICE on RoBERTa (Liu et al., 2019), a text discrete diffusion model,
to generate sentences with opposing sentiments while preserving structural similarities. We begin
with two prompts—one with a positive sentiment and another with a negative sentiment. Each
prompt contains two sentences: the first sentence indicates the sentiment type and sets the contextual
background, and the second sentence is the target for inversion and generation. Initially, we invert
the second sentence of the negative sentiment prompt using the entire prompt as context, which
produces a noised token representation of that sentence. Next, we condition the model on the positive
sentiment by concatenating the first sentence of the positive sentiment prompt with the noised token
of the inverted negative sentence. This setup guides the model to generate a new second sentence
that mirrors the structure of the original negative sentence but expresses a positive sentiment instead.
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two origami birds sitting on a branch A cat dog sitting on a wooden chair(a) (b)

Input Image Paella VQ-Diffusion

a cat tiger sitting next to a mirror white plate with fruits pizza on it(c) (d)

drawing of tulip lion on the coffee meat balls sushi on white plate(e) (f)

a plate with steak salmon on it white tiger cat on brown ground(g) (h)

Input Image Paella VQ-Diffusion

Figure 4: Visualization of editing results. Editing results for our method using Paella and VQ-
Diffusion are presented, along with their corresponding prompts. The results demonstrate that our
method can effectively modify the input image according to the target prompt while preserving the
image structure. Editing with masked generative model (Paella (Rampas et al., 2022)) is more stable
and easier than with multinomial diffusion models (VQ-Diffusion (Gu et al., 2022)).

Through this process, we assess the model’s capability to invert and generate text that aligns with a
specified sentiment while retaining the original sentence’s structural elements.

Inversion Process. In our experiment, we specifically focus on inverting the second sentence, indi-
cated as red in Table 6, while keeping the first sentence intact (black), as it usually contains essential
context. During the reverse process, we aim to reconstruct/edit the second sentence by recovering it
from the noised tokens acquired in the inversion phase.

Dataset

1. Positive Sentiment: Thanks to her efforts. The event was a huge success.
Negative Sentiment: Despite her efforts. The event was a complete disaster.

2. Positive Sentiment: This book is definitely interesting. I can’t put it down; it’s full of surprises.
Negative Sentiment: This book is definitely interesting. I can’t wait to finish it; it’s so predictable.

3. ...

Dataset Generation. In order to evaluate the editing performance, we designed and proposed a
new dataset called Sentiment Editing. The objective is to edit the sentiment of the sentence while
preserving the structure of the sentence and also sticking to the theme of the sentence. Here, we
demonstrate two sets of sentences in our dataset. Please refer to supplementary materials for the
process of generating the dataset and more examples.
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Method Structure CLIP Similarity

Inverse Editing Distance×103 ↓ Whole ↑ Edited ↑

C
on

tin
uo

us DDIM+SD1.4 P2P 69.43∗ 25.01∗ 22.44∗

Null-Text + SD1.4 P2P 13.44∗ 24.75∗ 21.86∗

Negative-Prompt + SD1.4 P2P 16.17∗ 24.61∗ 21.87∗

DDPM-Inversion + SD1.4 Prompt 22.12 26.22 23.02
D

is
cr

et
e Inpainting + Paella Prompt 91.10 25.36 23.42

Ours + Paella Prompt 11.34 23.79 21.23
Ours + VQ-Diffusion† Prompt 12.70 23.85 21.02

Table 2: Quantitative results on image editing performance. Comparison of our proposed method
with the masked inpainting with the discrete diffusion model Paella, as well as continuous diffusion
model (Stable Diffusion v1.4) using DDIM inversion. “P2P” refers to Prompt-to-Prompt (Hertz
et al., 2022), and “Prompt” denotes editing performed solely through forward edit prompts. Entries
marked with an asterisk (∗) are cited from Ju et al. (2023). †: For VQ-Diffusion, the images are
down-sampled to 256 × 256. It is important to note that due to differences in base models and
editing algorithms, the metrics across methods are not directly comparable. However, our method
significantly outperforms both inpainting and strong baselines (e.g., Null-Text Inversion + SD1.4) in
terms of structural preservation. As expected, inpainting achieves a high CLIP score since it directly
generates image patches based on the target prompt.

Method Background Preservation

Inverse Editing PSNR ↑ LPIPS×103 ↓ MSE×104 ↓ SSIM×102 ↑
DDIM+SD1.4 P2P 17.87 208.80 219.88 71.14

Ours+Paella Prompt 27.29 52.90 43.76 89.79

Table 3: Background Preservation. Quantitative comparison of background preservation between
our proposed method and DDIM+SD 1.4, achieved by masking the edited region and calculating
image similarity with the unedited masked image. The inpainting is served as upper bound since
only the masked region are edited and background are not modified.

4.2.1 INVERSION RECONSTRUCTION

Similar to the image generation section, we first demonstrate the inversion and reconstruction capa-
bilities of the proposed methods. This process involves inverting the sentences, followed by using
the same prompt to generate the reconstructed version of the second sentence.

Evaluation Metric. For reconstruction, we use Hit Rate, which is defined as the proportion of cases
where each method generates an identical sentence to the original. In addition, we compute the
Semantic Textual Similarity (STS) score by measuring the cosine similarity between the sentence
embeddings, using the model proposed by Reimers (2019) et al.

Quantitative Analysis. Table 4 compares DICE with Masked Generation using RoBERTa across
two metrics: Accuracy and Semantic Textual Similarity. Our method significantly surpasses Masked
Generation in both metrics, demonstrating that our zt latent space effectively captures the informa-
tion of the sentence being inverted and facilitates its subsequent reconstruction.

4.2.2 SENTENCE EDITING

In this section, we evaluate the editing performance of the proposed inversion method on RoBERTa.
In Table 6, the sentence shown in black under the negative prompt column is input during the in-
version process. The sentence that is being inverted is displayed in red. For editing, the prompt is
then substituted with the black sentence on the right, and noise is added at the end for the forward
process. The output of the forward process for the noise is presented in blue.

9
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Method Metric

Inverse+Model Accuracy×102 ↑
Textual

Similarity×102 ↑
Masked Generation+RoBERTa 0.0 6.57
Ours+RoBERTa 99.74 99.90

Table 4: Text Inversion Reconstruction Per-
formance. Quantitative comparisons of the text
reconstruction performance by Masked Genera-
tion and DICE method using RoBERTa as the
language model.

Method Metric

Inverse+Model Structure
Preservation×102 ↑

Sentiment
Correctness×102 ↑

Masked Generation+RoBERTa 29.80 12.94
Ours+RoBERTa 94.76 72.51

Table 5: Text Editing Performance. Evaluation
of the text editing performance between Masked
Generation and DICE using ChatGPT as a classi-
fier.

Evaluation Metric. For the sentence editing task, we evaluate the generated sentences based on two
criteria: (1) structural preservation, which assesses whether the sentence structure is retained, and (2)
sentiment correctness, which evaluates whether the sentiment of the edited sentence aligns with the
sentiment of the original prompt. Both the structural preservation rate and sentiment correctness rate
are calculated using ChatGPT-4 (Achiam et al., 2023) as a classifier. The details of using ChatGPT
for evaluation can be reviewed in Supplementary Materials.

Results. Table 5 presents a comparative analysis of two text editing methods that both employ
RoBERTa, focusing on the effectiveness in terms of Structure Preservation and Sentiment Correct-
ness. Our method significantly outperforms masked generation in both metrics. This difference
highlights the superior capability of our inversion method to encode the original structure of the text
in the latent space and the flexibility to adjust its sentiment more accurately. In Table 6, we demon-
strate both the initial prompt and the edited result. Our approach retains the sentence structure of the
negative prompt while modifying its sentiment to a more positive one.

Negative Prompt Our Edited Results
Negative Sentiment: This book is definitely inter-
esting.

Positive Sentiment: This book is definitely inter-
esting.

I can’t wait to finish it; it’s
so predictable.

I can’t wait to see it; it sounds
so beautiful.

Negative Sentiment: The new office space is fan-
tastic.

Positive Sentiment: The new office space is fan-
tastic.

It’s cramped and lacks proper
facilities.

It’s spacious and has great
facilities.

Negative Sentiment: Despite her efforts. Positive Sentiment: Thanks to her efforts.
The event was a complete
disaster.

This event was a fantastic comedy
game.

Negative Sentiment: Regarding the lecture. Positive Sentiment: Regarding the lecture.
It was dull and confusing. It was clear and surprising.
Negative Sentiment: Despite the initial problems. Positive Sentiment: Despite the initial problems.
The project ended in failure. New project still in progress.
Negative Sentiment: Regarding the new app. Positive Sentiment: Regarding the new app.
It’s complicated and not useful. It’s On and It’s Epic.
Negative Sentiment: Reflecting on my environ-
mental initiatives.

Positive Sentiment: Reflecting on my environ-
mental initiatives.

It’s challenging to maintain, and
progress is slow.

It’s easy to understand, and
progress is undeniable.

Table 6: Editing results of our method with RoBERTa. The sentences in black are the prompts
used for inversion and editing in their respective column. The sentence in red is the one being
inverted, and the blue sentence represents the editing result.

5 CONCLUSION

In this paper, we introduced DICE (Discrete Inversion for Controllable Editing), an inversion algo-
rithm for discrete diffusion models, including multinomial diffusion and masked generative models.
By leveraging recorded noise sequences and masking patterns during the reverse diffusion process,
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DICE enables accurate reconstruction and flexible editing of discrete data without the need for pre-
defined masks or cross-attention manipulation. Our experiments across multiple models and modal-
ities, such as images and text, demonstrate the effectiveness of DICE in preserving data fidelity
while enhancing editing capabilities. Furthermore, we demonstrate the potential of DICE for con-
verting RoBERTa, a model traditionally focused on data understanding, into a generative model for
text generation and editing. We believe that DICE enhances the capabilities of discrete generative
models, offering new opportunities for fine-grained content manipulation in discrete spaces.
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A DETAILS ON MULTINOMIAL DIFFUSION MODELS

Definition of Qt with mask-and-replace strategy. Following mask-and-replace strategy as:

Qt =


αt + βt βt βt · · · 0

βt αt + βt βt · · · 0
βt βt αt + βt · · · 0
...

...
...

. . .
...

γt γt γt · · · 1

 , (8)

given αt ∈ [0, 1], βt = (1− αt − γt) /K and γt the probability of a token to be replaced with a
[MASK] token.

Cumulative transition matrix. The cumulative transition matrix Qt and q (xt|x0) can be computed
via closed form:

Qtv (x0) = ᾱtv (x0) +
(
γ̄t − β̄t

)
v(K + 1) + β̄t1, (9)

where ᾱt =
∏t

i=1 αi, γ̄t = 1−
∏t

i=1 (1− γi), and β̄t = (1− ᾱt − γ̄t) /(K + 1) can be calculated
and stored in advance.

B ANALYSIS ON MUTUAL INFORMATION

Proof of Remark 3.1.

Proof. We assumed that x0 satisfies standard Gaussian distribution N (0, ID). Since

xt =
√
αtxt−1 +

√
1− αtϵt

where both xt−1 and ϵt are independent standard Gaussian random variables, xt is also standard
Gaussian, and in each dimension

Cov(xt,xt−1) =
√
αt,

which leads to
µ̂t(xt) = E(xt−1|xt) =

√
αtxt.

Therefore,

zt = x′
t−1 − µ̂t(xt)

= (
√

αt−1x0 +
√

1− αt−1ϵ)−
√
αt(
√
αtx0 +

√
1− αtϵ

′)

= βt ·
√
αt−1x0 +

√
1− αt−1ϵ+

√
αt(1− αt)ϵ

′.

Let
E =

√
1− αt−1ϵ+

√
αt(1− αt)ϵ

′

which is a Gaussian error term independent to x0 with mean 0 and variance 1−αt−1 +αt(1−αt).
Thus we can calculate the mutual information

I(zt;x0) = H(zt)−H(zt|x0)

= H(zt)−H(E)

=
D

2
log(2πe(β2

t αt−1 + 1− αt−1 + αt(1− αt))−
D

2
log(2πe(1− αt−1 + αt(1− αt))

=
D

2
log(

β2
t αt−1 + 1− αt−1 + αt(1− αt)

1− αt−1 + αt(1− αt)
).

C IMPLEMENTATION DETAILS

For all reconstruction task, we employ a τ = 1.0 and λ1 = 1.0, λ2 = 0.0 with 32 sampling steps
and 26 renoising steps. For editing tasks, the hyper-parameters are summarized in Table 7.

All models are implemented in PyTorch 2.0 and inferenced on a single NVIDIA A100 40GB.
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Editing Experiment Hyper-parameters

Method Configuration CFG λ1 λ2 τ

Paella Set 1 10.0 0.7 0.3 0.9
VQ-Diffusion Set 1 5.0 0.2 0.8 1.0

RoBERTa Sentiment Set 1 - 0.2 0.8 0.7
Set 2 - 0.25 0.75 0.7

Table 7: Hyper-parameters for Paella, VQ-Diffusion, and RoBERTa sentiment editing experiments.
For sentiment editing task with RoBERTa, we utilize two sets of hyper-parameters empirically due
to the variance in the sentence length.

D ABLATION STUDIES

D.1 NOISE INJECTION FUNCTION

Addition. In the main text we have adopted the addition function as noise injection function,

ỹ = log(π) + λ1 · z + λ2 · g.
This is a natural form inspired by the Gumbel-Max trick: thinking of λ1 · z as a correction term,
then log(π) + λ1 · z is the corrected logit and λ2 is the inverse of temperature of the logit to control
the sharpness of the resulting categorical distribution, as

argmax (log(π) + λ1 · z + λ2 · g) = argmax (
1

λ2
(log(π) + λ1 · z) + g), λ2 > 0.

λ1 then controls how much correction we would like to introduce in the original logit.

Variance preserving. From another perspective, z is the artificial “Gumbel” noise that could have
been sampled to realize the target tokens. Then, if we treat z as Gumbel noise and want to perturb it
with random Gumbel noise, addition does not result in a Gumbel distribution. One way is to approx-
imate this sum with another Gumbel distribution. If G1 ∼ Gumbel(µ1, β1), G2 ∼ Gumbel(µ2, β2)
and G = λ1G1 + λ2G2, then the moment matching Gumbel approximation for G is

Gumbel(µG, βG), with

βG =
√

λ2
1β

2
1 + λ2

2β
2
2 ,

µG = λ1µ1 + λ2µ2 + γ(λ1β1 + λ2β2 − βG),

where γ ≈ 0.5772 is the Euler-Mascheroni constant. We consider the variance preserving form:

ỹ = log(π) +
√
λ1 · z +

√
λ2 · g, λ1 + λ2 = 1.

Max. The third way is inspired by the property of Gumbel distribution (Wikipedia contributors,
2024), that if G1, G2 are iid random variables following Gumbel(µ, β) then max {G1, G2}−β log 2
follows the same distribution. We also consider the max function for noise injection:

ỹ = log(π) + max{λ1 · z, λ2 · g}.

D.2 HYPERPARAMETER SEARCH

In this section, we analyze the impact of varying hyperparameters λ1, λ2, τ , and CFG scale on
the quality of image generation and adherence to textual descriptions, quantified through Structure
Distance and CLIP similarity. The hyperparameters play specific roles: λ controls the amount of
noise introduced in each reverse step, τ governs the percentage of tokens replaced with random
tokens during inversion, and Classifier-Free Guidance (CFG) scales the influence of the text prompt
during image synthesis. To limit the search space and simplify the ablation, we choose λ1 = λ and
λ2 = 1− λ and vary the value of λ. Evaluation metrics are given in Figure 5.

Effect of λ1 and λ2: With a fixed CFG of 10.0, the graphs indicate that increasing λ results in a
rise in Structure Distance, suggesting a decline in structural integrity of the images. This increase in
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Figure 5: The effect of hyperparameters λ1, λ2, τ , CFG on the Structure Distance (↓) and CLIP
similarity (↑) with addition function as noise inject function. In our implementation, to limit the
search space, we choose λ1 = λ and λ2 = 1− λ for simplicity.

noise appears to allow for greater exploration of the generative space at the expense of some loss in
image clarity.

Effect of τ : Higher τ values, particularly at 0.9, show a notable rise in Structure Distance as CLIP
similarity increases. This implies that more token replacement can lead to images that align better
with the text prompts but may suffer in maintaining structural fidelity, likely due to xT contains less
information of the original image while λ injects additional noise during editing phase.

Effect of CFG Scale: Varying CFG at a fixed λ of 0.7 and τ of 0.9 reveals that higher CFG values
substantially improve Structure Distance, but to an extent (CFG of 10). Beyond this point, further
increases in CFG do not yield significant improvements in structural quality, indicating a diminishing
return on higher guidance levels. This plateau suggests that while increasing CFG helps in aligning
the generated images more closely with the text prompts initially, the benefits in structural integrity
and clarity become less visible as CFG values exceed a certain threshold. This finding underscores
the need for a balanced approach in setting CFG, where too much guidance may not necessarily lead
to better outcomes in terms of image quality and fidelity to the textual description.

Effect of noise injection function: We also conducted evaluations using a variance-preserving
noise injection function by setting λ1 =

√
λ and λ2 =

√
1− λ. The results of these experiments

are presented in Figure 6. As for the max function, we performed a manual inspection of the visual
examples generated with this function. The quality of these examples was noticeably inferior, we
therefore omit the corresponding evaluation curves from our analysis.

In conclusion, this ablation study demonstrates that increasing λ and τ can enhance adherence to text
prompts through broader explorations in generative spaces, yet this benefit is offset by a decrease in
the structural quality of the images. On the other hand, raising CFG values enhances the structural
integrity of images to a certain threshold, after which the improvements plateau, indicating a ceiling
to the effectiveness of higher CFG settings. This analysis offers empirical guidance for selecting
hyperparameters, balancing the trade-offs between text alignment and image quality to optimize
image synthesis outcomes.
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Figure 6: The effect of hyperparameters λ1, λ2 with variance preserving scheme. We set λ1 =√
λ and λ2 =

√
1− λ.

E ADDITIONAL RESULTS ON IMAGE EDITING

Reconstruction result with Paella. In Figure 8 we demonstrates the inversion reconstruction result
with Paella using our proposed method.

Image editing with diversity. As shown in Figure 10, our method enables diverse image editing
results through stochastic variation. The first three rows demonstrate the impact of varying both the
inversion masks and the injected Gumbel noise, while the last two rows focus on variations produced
by changing only the inversion masks.

F ADDITIONAL RESULTS ON TEXT EDITING

Dataset generation. To generate the dataset, we utilize ChatGPT-4o with the following prompt:

User

Generate 200 pairs of sentences that contains the same meaning, but one with positive senti-
ment and one with negative sentiment. For both positive sentiment and negative sentiment,
you need to write two sentences with the first part being a hint of the sentiment and the
second part being the actual content. The first part for both sentences should be same. write
in the format like:
hint. positive.
hint. negative.
Make sure that there are two lines for each pairs. Also, the hint should provide enough
context and both positive and negative sentiment should be related to the hint. Do not repeat
the hint, also make sure that there is only two sentences in each of the line, one is the hint
and the other is about the sentiment.
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Figure 7: The effect of different λ schedule on the Structure Distance (↓) and CLIP similarity
(↑). In our implementation, to limit the search space, we choose λ1 = λ and λ2 = 1 − λ for
simplicity.
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ChatGPT

1. Thanks to her efforts. The event was a huge success.
Despite her efforts. The event was a complete disaster.

2. ...

The sentences is then added with a prefix to indicates the sentiment of the context. Here we demon-
strates a subset of our generated dataset:

1. Positive Sentiment: Thanks to her efforts. The event was a huge success.
Negative Sentiment: Despite her efforts. The event was a complete disaster.

2. Positive Sentiment: This book is definitely interesting. I can’t put it down; it’s full of
surprises.
Negative Sentiment: This book is definitely interesting. I can’t wait to finish it; it’s so
predictable.

3. Positive Sentiment: The new office space is fantastic. It’s spacious and perfect for produc-
tivity.
Negative Sentiment: The new office space is fantastic. It’s cramped and lacks proper facil-
ities.

4. Positive Sentiment: Thanks to her efforts. The event was a huge success.
Negative Sentiment: Despite her efforts. The event was a complete disaster.

5. Positive Sentiment: Regarding the lecture. It was insightful and engaging.
Negative Sentiment: Regarding the lecture. It was dull and confusing.

6. Positive Sentiment: Despite the initial problems. The project was a success.
Negative Sentiment: Despite the initial problems. The project ended in failure.

7. Positive Sentiment: Regarding the new app. It’s user-friendly and very helpful.
Negative Sentiment: Regarding the new app. It’s complicated and not useful.

8. Positive Sentiment: Reflecting on my environmental initiatives. Implementing changes has
reduced my carbon footprint.
Negative Sentiment: Reflecting on my environmental initiatives. It’s challenging to main-
tain, and progress is slow.

9. Positive Sentiment: The business proposal was well-received. The ideas were innovative,
and the presentation was convincing.
Negative Sentiment: The business proposal was rejected. The ideas were impractical, and
the presentation was unconvincing.

10. Positive Sentiment: The training program was highly effective. It boosted skills and confi-
dence, and everyone left motivated.
Negative Sentiment: The training program was ineffective. It didn’t teach much, and most
people left feeling unmotivated.

11. ...

Evaluation. Below, we demonstrate the prompt used for evaluating the editing results:

User

Given three sentences, confirm that the second sentence is roughly the same sentence struc-
ture as the first sentence, then confirm that the second sentence has positive sentiment. Out-
put only two numbers with each number indicating whether the corresponding criteria is
satisfied. Use 1 for satisfied and 0 for not satisfied. The sentences are given below:
The event was a complete disaster.
This event was a fantastic comedy game.
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two origami birds sitting on a branch A cat dog sitting on a wooden chair(a) (b)

Input Image Reconstruction Editing Input Image Reconstruction Editing

a cat tiger sitting next to a mirror white plate with fruits pizza on it(c) (d)

drawing of tulip lion on the coffee meat balls sushi on white plate(e) (f)

a plate with steak salmon on it white tiger cat on brown ground(g) (h)

Figure 8: Reconstruction and editing result with DICE+Paella.

ChatGPT

1 1

Comparison between masked inpainting and DICE. In Figure 9 we demonstrates the reconstruc-
tion and editing results with our DICE and Masked Inpainting.
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a colorful red bird standing on a branch

meat balls sushi on white plate

a cat dog sitting on a wooden chair

a round square cake with orange frosting on a wooden plate(a)

(b)

(c)

(d)

Masked Inpainting Discrete Inversion
Reconstruction Editing

Masked Inpainting Discrete InversionInput Image

Figure 9: Reconstruction and editing result with DICE and masked inpainting. Notice that for
reconstruction, we use the red prompt, but for editing we use the green prompt.
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A sketch sculpture of a cat

Input Image

two origami birds sitting on a branch

Different Samples from DICE

white tiger cat on brown ground

Varying in M
ask and G

um
bel N

oise
Varying in M

ask

a cat dog sitting on a wooden chair

a dog lion is laying down on a white background

Figure 10: Image Editing with Diversity. Due to the stochastic nature of our method, we can gen-
erate diverse outputs. The first three rows illustrate variations in both inversion masks and injected
Gumbel noise (λ1 = 0.7, λ2 = 0.3). The last two rows demonstrate variations using only inversion
masks (λ1 = 1, λ2 = 0).
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