CS205-Recitation 8

Xiaoxiao(Arist) He

Rutgers University

10-05-2022

Topics

- Strong induction
- Loop Invariants

Strong Induction Outlines

Recall weak induction:

- Prove one base case is correct.
- Induction step: Assume that for case n is correct. Then prove that n+1 case is correct by using the fact that n is correct.

However, strong induction assumes all cases up to n is correct. Then, we need to prove that n+1 is correct using the fact that previous n cases are correct.

Example of a strong induction proof

Proof: We need to show that $\forall n \in \mathbb{N} n \leq 1$ can be written as the sum of distinct powers of two by strong induction.

Example of a strong induction proof

Proof: We need to show that $\forall n \in \mathbb{N} n \leq 1$ can be written as the sum of distinct powers of two by strong induction.

Base case
$$n=1$$

When n = 1, then $2^0 = 1$

Example of a strong induction proof

Strong Induction Step

Assume that the claim is true for all $1 \le n \le k$. Then we can write $k+1=2^i+M$ for some $M \ge 0$. Note that $M \le 2^i$ by our choice of i. If M=0, then we are done. Otherwise, $1 \le M < 2^i$, M is the sum of some distinct power of two $M=2^{j_1}+\ldots+2^{j_t}$. Since $M<2^i$, we have that $2^{j_1}\ldots 2^{j_t}$ all less than 2^i . Hence $k+1=2^i+2^{j_1}+\ldots+2^{j_t}$ is a representation of k+1 as sum of distinct power of two.

Loop Invariants

Next, proofs of correctness of **while** loops will be described. To develop a rule of inference for program segments of the type

while condition

note that S is repeatedly executed until *condition* becomes false. An assertion that remains true each time S is executed must be chosen. Such an assertion is called a **loop invariant**. In other words, p is a loop invariant if $(p \land condition)\{S\}p$ is true.

Figure: Definition of loop invariants

Exercises

Find loop invariant and prove that the following code finds the minimum element of a n-element list A

```
i=1
min=A[0]
while i < n do

if A[i] \le min then
min=A[i]
end if
i=i+1
end while
return min
```

Exercise

Let p be the assertion of min is the minimum of $A[0,...,i-1], i \leq n$. First, we need to prove that p is a loop invariant.

Suppose that min = min(A[0,...,i-1])i - 1 < n, then we need to prove that $min_{new} = A[0,...,i]$.

If $A[i] \leq min$, we make $min_{new} = A[i]$, which is the minimum of A[0,...,i], else $min_{new} = min$, which is also the minimum of A[0,...,i]Thus p is true at the end of the loop.

Remark

This looks familiar to the inductive step of induction proof.

Exercise¹

Then we can show that p is true for the beginning of the program, which means when i = 1, min = A[0],

 $\min A[0,...,i-1] = \min A[0] = A[0] = min.$

The last check if the loop terminates: The initial value of i is 1, and after n-1 loops, the value of i is n, and the loop will terminate at then.

Attendance

https://go.rutgers.edu/9qksv8d5

